US ERA ARCHIVE DOCUMENT | | | Antimicrobial Efficacy Test Methods Workshop Highlights from Workshop Sessions February 18, 2014 – Clostridium difficile Test Methods | |--|--|---| | Method/Activity | Aspect | Comments/Recommendations | | EPA's guidance on testing C. difficile | Towelette
Testing | In this session, an overview of the proposed revisions to EPA's guidance for C. difficile claims was provided to participants. See associated ppt presentation for details. Most notable, testing will be conducted using actual towelettes, but will not be based on the expressed liquid. Action Item: MLB will consult with Antimicrobials Divisions on use of liquids in QCT-2 for towelettes. | | Method/Activity | Aspect | Test Microbe | | ASTM E2839-11 (Standard Test Method for Production of Clostridium difficile Spores) or BEAD/MLB SOP MB-28-01 | Strains | EPA provided a comprehensive overview of the C. difficile strain (in the revised guideline) used in testing. No comments from participants. | | | Diagnostic characteristics | Typical characteristics of growth on media and spore/cell morphologies were described by EPA. No comments from participants. | | | Specialized equipment, media and regents | The equipment and supplies necessary for testing of C. difficile were discussed by EPA. Also, the maintenance and function of the anaerobic chambers were discussed by EPA. A question was raised regarding whether or not EPA has seen any difference in using glass tubes vs. plastic tubes for the RCM step? EPA has not conducted a comparison study. During the session, EPA reiterated the need to maintain fully reduced media for use in recovery assays: Action Item: EPA to clearly identify time frame for reducing liquid and solid media. EPA suggests a minimum of 24 hours under anaerobic conditions. EPA will provide revisions to ASTM E2839-11. Labs place RCM loosely-capped overnight in anaerobic environment to reduce. EPA demonstrated use of the Coy Anaerobe chamber and the anaerobe jars. | | | | Intimicrobial Efficacy Test Methods Workshop Highlights from Workshop Sessions February 18, 2014 – Clostridium difficile Test Methods | |-----------------|----------------------------------|---| | | | EPA does not use anaerobe jars, but they are considered adequate if used properly. Majority of participants use anaerobe jars. Comment: If jar opened, replace indicator packs before closing. Over time, anaerobe jars lids (inner lid) may be compromised and/or crack, thus inspection of the lid's seal is necessary prior to use. Comment: Typical practice for incubation of plates includes sealing the agar plates with parafilm to reduce dehydration; this practice may be employed for incubation of plates in jars for the 5 day period. Comment: Some labs buy CABA plates from bioMerieux and reduce them on site. Most labs buy from Anaerobe Systems (pre-reduced). Comment: Media performance of in-house media should be conducted to confirm media quality by use of stock spores of known titer to check media. At a minimum, for purchased media, review and maintain the certification documents. Verify performance of purchased media if lot to lot differences in quality are suspected. Action Item: EPA will follow-up on the need to include media performance data in the GLP data submissions. Comment: Consensus on the use of ST80; everyone using for dispersion. | | | Establishment
of frozen stock | EPA presented the procedure for generating and storing stock (frozen vegetative stock). Action Item: EPA to add shelf-life of frozen stock to the standard and SOP – EPA suggested 18 months. | | Method/Activity | Aspect | Sporulation Protocol | | ASTM E2839-11 | | EPA provided a detailed presentation of the spore production protocol. When using anaerobe jars, MLB recommended the use of a second jar to remove plate(s) for observation during the 7-10 day incubation. Recommend use of swinging bucket rotor for centrifugation steps, especially for the purification step. | | | | Intimicrobial Efficacy Test Methods Workshop Highlights from Workshop Sessions February 18, 2014 – Clostridium difficile Test Methods | |--|--|---| | | | Action Item: EPA will add time frame for storage of spore suspension (post heat
treatment) prior to purification to SOP and ASTM standard; 2 to 7 days was
recommended. | | Method/Activity | Aspect | Spore Purity and Resistance Testing | | ASTM E2839-11 | | Action Item: Revise MLB SOP MB-28-01 to instruct users to bring HistoDenz and
spore suspension to room temp prior to purification step, and ensure that liquid in
tubes (in heat block or water bath) is at 65°C prior to starting the 10 minute
exposure time. | | Method/Activity | Aspect | Other Acceptable Sporulation Protocols | | ASTM E2895-13 (Standard Test Method for Producing Spores of Clostridium difficile using Liquid Medium) | Mission - One
sporulation
method | Another acceptable method, ASTM E2895-13, was discussed; some concerns were raised about the enzymatic process of purifying the spores and its impact on spore resistance. A new method, Liver broth method, is currently being balloted by ASTM; and according to one stakeholder, the method is comparatively simple and provides a highly pure spore preparation without a separate purification step. EPA believes it is desirable to have one standard method for spore production. Users need to consider pros and cons of each method and decide on one method. Action Item: EPA will seek feedback from stakeholders on the use of a single method and will discuss options internally for a long-term resolution. Participants agreed to provide feedback to EPA on any issues associated with qualifying spores for use. | | Method/Activity | Aspect | Product Efficacy Testing – Quantitative Methodologies | | ASTM E2197-11
(Standard
Quantitative Disk
Carrier Test
Method)
MLB SOP MB-31 | Carriers | MLB demonstrated QCT-2 in a step-by-step fashion. Participants expressed concerns that there is only one source of the brushed stainless steel carriers (Pegen). Currently, the standard method allows re-use of carriers. Action Item: Re-use not advisable. Participants to petition ASTM committee to remove option from method. | | | Spore | Target test spore suspension concentration is 8 to 9 logs/mL. Suspension may be | ## Antimicrobial Efficacy Test Methods Workshop **Highlights from Workshop Sessions** DAY 1: February 18, 2014 - Clostridium difficile Test Methods diluted on day of use to reach target of 6 to 7 logs/carrier. suspension Inoculum Comment: Vortex mix spore suspension every 3 carriers. May use same tip throughout carrier inoculation process. Action Item: EPA to revise SOP MB-31. Carrier drying Comment: ASTM standard silent on drying of spore-formers like C. difficile. Currently in MLB's SOP: Inoculate carriers, dry in biological safety cabinet for 30 min with lid off, transfer to desiccator to dry (lids off) 2 hr with vacuum. Thirty minute/no vacuum drying step allows user time to check drying of carriers to ensure inoculum remains on carrier/sufficient levels of inoculum before transferring to desiccator. PES Action Item: EPA to provide source and catalog number for PES filters. Pall Corporation #66234 (individual filters) membranes Pall Corporation #4806 (microfunnel filter unit, 0.2 μm) Vials Action Item: EPA to provide source and catalog number for vials. Thermo Scientific #2118-9050 (Nalgene, straight-side wide-mouth jar, polypropylene) Vortexing Comment: Adequate vortexing is essential to remove inoculum from carrier. MLB carriers uses vortex set on highest setting; carrier should be spinning in mixture during the process. Visually inspect carriers to ensure inoculum is completely removed by conducting additional vortexing if necessary. Comment: Vacuum should be on during rinsing of vials and dilution tubes. Not specified in MLB's SOP. Action Item: Revise MLB SOP-MB-31 to keep the vacuum during rinsing. Comment: Some labs have observed that colonies are not obvious on filters early in Filtration the incubation time frame (2 days) for treated carriers; a film of growth on filter is observed after 3-5 days. Subculture reveals presence of C. difficile. Additional incubation time frame recommended (to 5 days) for treated carriers. Comment: Wetness of plates can adversely affect growth of organism on filters. Comment: If using microfunnel filter units for filtration after treatment, analysts | Antimicrobial Efficacy Test Methods Workshop Highlights from Workshop Sessions DAY 1: February 18, 2014 – Clostridium difficile Test Methods | | | | |--|-------------------------|--|--| | | | must snap top off the filter unit and continue to apply vacuum to filter remaining liquid through filter. | | | | Important time frames | EPA reiterated the need to conduct the work as quickly as possible, from end of contact time to completion of filtration. Surviving spores are vulnerable, risk exposure to oxygen. For example, dilutions should be made with 30 minutes of neutralization and filtration/plating should occur within 50±10 minutes of preparing the dilutions. Also, if using an anaerobe jar, load plates into jar within 15 minutes following | | | | | completion of plating – this was a recommendation and should be incorporated in the lab SOPs if using anaerobe jars. | | | | Questions to consider | How to do neutralization? Not discussed, however, neutralization will be conducted in accordance with BEAD/MLB SOP MB-26-00 using the following revisions specific to C. difficile. The spore suspension will be diluted appropriately in ST-80 to obtain 20-200 CFU/filter. A suspension test using 10µL of the diluted spore suspension will be employed instead of a carrier-based approach. Contact time will be 10 minutes and neutralization will be considered adequate if the CFU for all treatments are within 50% of the titer control. | | | AOAC 2008.05
(Three Step
Method) | Advantages of method | MLB demonstrated the TSM in a step-by-step fashion using the consolidation of fractions B and C. Comments: Carriers are single use only. The TSM has a good track record, and AOAC validation history with spore formers. | | | | Disadvantages of method | • Sensitivity concerns due to sampling (10 μl of 1 mL sample) | | | Comparison of QCT-2 to TSM | | EPA stated that use of a single test method for efficacy evaluations is desirable in the long term. EPA has not conducted side by side studies to know if products give same results under both methods. | | | | | Antimicrobial Efficacy Test Methods Workshop Highlights from Workshop Sessions February 18, 2014 – Clostridium difficile Test Methods | |---|--|--| | | | Action Item: The development of a reference standard (high and low efficacy
treatments) for both methods is desirable; sodium hypochlorite is a viable
candidate. EPA will initiate studies. | | ASTM E2896-12
(Standard Test
Method for
Quantitative Petri
Plate Method
(QPM)) | Control of humidity during drying of inoculated plates | MLB provided a full demonstration of the procedure. Comment: Humidity may vary during the drying process; however, an environmental monitoring system documents the relative humidity in the incubator. | | | Media | Comment: Consider pre-dispensing all liquid reagents (dilution blanks) and media
for ease of use. | | | Uniform
wiping
procedure | Comment: Important to use consistent pressure, from test to test, during wiping of carrier during neutralization step. Comment: Avoid releasing all of active ingredient (i.e., liquid) onto the plate; neutralization is negatively impacted by extreme pressure/high liquid volume – more liquid, more neutralization that has to take place. | | All Methods | Incubation and recording or results | Comment: For treated carriers, colonies can be counted on day 3; however, filters with few or no colonies should incubate for up to 5 days. Action Item: Revise SOPs and ASTM standard for incubation periods for control and treated carriers. | | | Calculations
and
interpretation
of results | No comments. EPA announced plans to conduct a collaborative study on QPM and C. difficile. The goal is launch the study in 2014 to fulfill ASTM data requirements. This study is considered to be the first in a series of evaluations designed to determine the method's performance. A number of labs expressed interest in participating in the study. The biggest impediment is treatment (antimicrobial wipes) selection – i.e., use of commercially available products. Action Item: Develop the study protocol and work with stakeholders for laboratory support. |